
Virtual functions &
Polymorphism
Lecture 19

Concrete classes

• Classes that can be used to instantiate objects are called
concrete classes

• Such classes provide implementations of every member
function they define

Example

class point

{ int x,y,z;

 public:

 point(int d,int e, int f)

 { x=d; y=e; f=z; }

void display()

{cout<<x<<y<<z; }

};

void main()

{

 point a(10,20,15);

 a.display();

}

Abstract classes

• Sometimes it is useful to define classes from which
programmer never intends to instantiate any objects

• Such classes are called abstract classes

contd..

• These classes are normally used as base classes in inheritance
hierarchies

• Generally referred to as abstract base classes

Abstract base classes

• Cannot be used to instantiate objects as these are incomplete

• Derived classes must define/complete the missing part

• Good object oriented programming practice

Pure virtual function

• A class is made abstract by declaring one or more of its virtual
functions to be “pure”

• A pure virtual function is specified by placing “=0” in its
declaration

 virtual void area() = 0;

Pure virtual function

• Pure virtual functions do not provide implementations

• Every concrete derived class must override all base-class pure
virtual functions

Virtual function vs. pure virtual function

• Virtual function has an implementation and gives the derived
class the option of overriding the function

• A pure virtual function does not provide implementation and
requires the derived class to override the function

Example
class quadrilateral

{ public:

 virtual void area() =0 };

class square : public quadrilateral

{ int side;

 public: square(int i=1) { side=i; }

 void area() { cout<<"\n Area of square is : "<<(side*side); }};

class rectangle : public quadrilateral

{ int side1; int side2;

 public: rectangle(int i,int j) { side1=i; side2=j; }

 void area() { cout<<"\n Area of rectangle is : <<(2*side1*side2);}

void main()

{ quadrilateral *q=new

square(3);

 q->area(); delete q;

 q=new rectangle(2,4);

 q->area();}

Pointers to abstract base
classes
• Though we cannot instantiate objects of an abstract base

class, we can use the abstract base class to declare pointers
and references that can refer to objects of any concrete class
derived from the abstract class

Virtual destructors
class quadrilateral

{ public: virtual ~quadrilateral() {
cout<<"\n Base class " ;}

};

class square : public quadrilateral

{ int side;

 public: square(int i=1) { side=i; }

 ~square() { cout<<"\n Square class " ; }};

class rectangle : public quadrilateral

{ int side1; int side2;

 public: rectangle(int i,int j) { side1=i; side2=j; }

 ~rectangle() { cout<<"\n Rectangle class " ; }};

void main()

{ quadrilateral *q=new

square(3);

 delete q;

 q=new rectangle(2,4);

 delete q; }

Class assignment
 Consider the following class definition

class father {

protected : int age;

public;

father (int x) {age = x;}

virtual void iam ()

{ cout < < “I AM THE FATHER, my age is : ”<< age<< end1:}

};

Derive the two classes son and daughter from the above class and for each,

define iam () to write our similar but appropriate messages. You should

also define suitable constructors for these classes. Now, write a main ()

that creates objects of the three classes and then calls iam () for them.

Declare pointer to father. Successively, assign addresses of objects of the

two derived classes to this pointer and in each case, call iam () through

the pointer to demonstrate polymorphism in action.

